Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ACS Sens ; 7(3): 730-739, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1707179

ABSTRACT

Viral evolution impacts diagnostic test performance through the emergence of variants with sequences affecting the efficiency of primer binding. Such variants that evade detection by nucleic acid-based tests are subject to selective pressure, enabling them to spread more efficiently. Here, we report a variant-tolerant diagnostic test for SARS-CoV-2 using a loop-mediated isothermal nucleic acid-based amplification (LAMP) assay containing high-fidelity DNA polymerase and a high-fidelity DNA polymerase-medicated probe (HFman probe). In addition to demonstrating a high tolerance to variable SARS-CoV-2 viral sequences, the mechanism also overcomes frequently observed limitations of LAMP assays arising from non-specific amplification within multiplexed reactions performed in a single "pot". Results showed excellent clinical performance (sensitivity 94.5%, specificity 100%, n = 190) when compared directly to a commercial gold standard reverse transcription quantitative polymerase chain reaction assay for the extracted RNA from nasopharyngeal samples and the capability of detecting a wide range of sequences containing at least alpha and delta variants. To further validate the test with no sample processing, directly from nasopharyngeal swabs, we also detected SARS-CoV-2 in positive clinical samples (n = 49), opening up the possibility for the assay's use in decentralized testing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
Signal Transduct Target Ther ; 6(1): 428, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585884

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. In this study, we showed that SARS-CoV-2-triggered MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation altered various signaling pathways in alveolar epithelial cells, particularly, the induction of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.


Subject(s)
COVID-19/metabolism , Cell Degranulation , Lung Injury/metabolism , Mast Cells/metabolism , Pulmonary Alveoli/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , Cell Line, Tumor , Female , Humans , Lung Injury/genetics , Lung Injury/virology , Macaca mulatta , Male , Mice, Inbred BALB C , Mice, Transgenic , Pulmonary Alveoli/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Sci Rep ; 11(1): 2936, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1062770

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has caused a global pandemics. To facilitate the detection of SARS-CoV-2 infection, various RT-LAMP assays using 19 sets of primers had been developed, but never been compared. We performed comparative evaluation of the 19 sets of primers using 4 RNA standards and 29 clinical samples from COVID-19 patients. Six of 15 sets of primers were firstly identified to have faster amplification when tested with four RNA standards, and were further subjected to parallel comparison with the remaining four primer sets using 29 clinical samples. Among these 10 primer sets, Set-4 had the highest positive detection rate of SARS-CoV-2 (82.8%), followed by Set-10, Set-11, and Set-13 and Set-17 (75.9%). Set-14 showed the fastest amplification speed (Tt value < 8.5 min), followed by Set-17 (Tt value < 12.5 min). Based on the overall detection performance, Set-4, Set-10, Set-11, Set-13, Set-14 and Set-17 that target Nsp3, S, S, E, N and N gene regions of SARS-CoV-2, respectively, were determined to be better than the other primer sets. Two RT-LAMP assays with the Set-4 primers in combination with any one of four other primer sets (Set-14, Set-10, Set-11, and Set-13) were recommended to be used in the COVID-19 surveillance.


Subject(s)
COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , RNA, Viral/metabolism , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing , Humans , Limit of Detection , SARS-CoV-2/isolation & purification
4.
Mol Med ; 26(1): 95, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-873932

ABSTRACT

Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.


Subject(s)
Coronavirus Infections/immunology , Epigenesis, Genetic/immunology , Idiopathic Pulmonary Fibrosis/immunology , Mechanotransduction, Cellular/immunology , Pneumonia, Viral/immunology , Pulmonary Embolism/immunology , Respiratory Insufficiency/immunology , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/pathology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Biomechanical Phenomena , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/genetics , Cytokines/immunology , Endothelial Cells/immunology , Endothelial Cells/pathology , Fibroblasts/immunology , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/virology , Lung/blood supply , Lung/immunology , Lung/pathology , Macrophages/immunology , Macrophages/pathology , Mechanotransduction, Cellular/genetics , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pulmonary Embolism/genetics , Pulmonary Embolism/pathology , Pulmonary Embolism/virology , Respiratory Insufficiency/genetics , Respiratory Insufficiency/pathology , Respiratory Insufficiency/virology , SARS-CoV-2 , Stress, Mechanical
5.
mSphere ; 5(5)2020 10 07.
Article in English | MEDLINE | ID: covidwho-842254

ABSTRACT

The objective was to analyze the longitudinal distribution, epidemiological characteristics, and local prevention and control measures of coronavirus disease 2019 (COVID-19) in six cities in Henan Province, China, from 21 January 2020 to 17 June 2020: Xinyang City (including Gushi County), Nanyang City (including Dengzhou City), Zhumadian City (including Xincai County), Zhengzhou City (including Gongyi City), Puyang City, and Anyang City (including Hua County). Data were collected and analyzed through the COVID-19 information published on the official websites of the health commissions in the six selected cities of Henan Province. As of 17 June 2020, the cumulative incidence rate of COVID-19 in Henan Province was 1.33/100,000, the cumulative cure rate was 98.27%, the cumulative mortality rate was 1.73%, the age range of diagnosed cases was 5 days to 85 years old, and the male-to-female ratio was 1.09:1. The confirmed cases of COVID-19 in Henan Province were mainly imported cases from Hubei, accounting for 87.74% of all cases, of which the highest proportion was 70.50% in Zhumadian. The contact cases and local cases increased in a fluctuating manner over time. In this paper, epidemiological characteristics of COVID-19 in Henan Province were analyzed from the onset of the outbreak to the effective control within 60 days, and effective and distinctive prevention and control measures in various cities were summarized to provide a favorable useful reference for the further formulation and implementation of epidemic prevention and control and a valuable theoretical basis for effectively avoiding a second outbreak.IMPORTANCE Epidemic prevention and control in China have entered a new stage of normalization. This article analyzes the epidemiological characteristics of COVID-19 in Henan Province and summarizes the effective disease prevention and control means and measures at the prefecture level; the normalized private data provide a theoretical reference for the formulation and conduct of future prevention and control work. At the same time, these epidemic prevention and control findings can also be used for reference in other countries and regions.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Child, Preschool , China/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Female , Humans , Incidence , Infant , Infant, Newborn , Longitudinal Studies , Male , Middle Aged , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Urban Health/trends , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL